A molecular basis for how a single TCR interfaces multiple ligands.

نویسندگان

  • A Boesteanu
  • M Brehm
  • L M Mylin
  • G J Christianson
  • S S Tevethia
  • D C Roopenian
  • S Joyce
چکیده

CD8+ T cells respond to Ags when their clonotypic receptor, the TCR, recognizes nonself peptides displayed by MHC class I molecules. The TCR/ligand interactions are degenerate because, in its life time, the TCR interacts with self MHC class I-self peptide complexes during ontogeny and with self class I complexed with nonself peptides to initiate Ag-specific responses. Additionally, the same TCR has the potential to interact with nonself class I complexed with nonself peptides. How a single TCR interfaces multiple ligands remains unclear. Combinatorial synthetic peptide libraries provide a powerful tool to elucidate the rules that dictate how a single TCR engages multiple ligands. Such libraries were used to probe the requirements for TCR recognition by cloned CD8+ T cells directed against Ags presented by H-2Kb class I molecules. When H-2Kb contact residues were examined, position 3 of the peptides proved more critical than the dominant carboxyl-terminal anchor residue. Thus, secondary anchor residues can play a dominant role in determining the antigenicity of the epitope presented by class I molecules. When the four solvent-exposed potential TCR contact residues were examined, only one or two of these positions required structurally similar residues. Considerable structural variability was tolerated at the remaining two or three solvent-exposed residues of the Kb-binding peptides. The TCR, therefore, requires close physico-chemical complementarity with only a few amino acid residues, thus explaining why TCR/MHC interactions are of low affinity and degenerate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for T cell recognition of altered peptide ligands: a single T cell receptor can productively recognize a large continuum of related ligands

T cells recognize short linear peptides bound to major histocompatibility complex (MHC)-encoded molecules. Subtle molecular changes in peptide antigens produce altered peptide ligands (APLs), which induce different T cell responses from those induced by the antigenic ligand. A molecular basis for how these slight molecular variations lead to such different consequences for the T cell has not be...

متن کامل

Using Global Analysis to Extend the Accuracy and Precision of Binding Measurements with T cell Receptors and Their Peptide/MHC Ligands

In cellular immunity, clonally distributed T cell receptors (TCRs) engage complexes of peptides bound to major histocompatibility complex proteins (pMHCs). In the interactions of TCRs with pMHCs, regions of restricted and variable diversity align in a structurally complex fashion. Many studies have used mutagenesis to attempt to understand the "roles" played by various interface components in d...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

A response calculus for immobilized T cell receptor ligands.

To address the molecular mechanism of T cell receptor (TCR) signaling, we have formulated a model for T cell activation, termed the 2D-affinity model, in which the density of TCR on the T cell surface, the density of ligand on the presenting surface, and their corresponding two-dimensional affinity determine the level of T cell activation. When fitted to T cell responses against purified ligand...

متن کامل

Relationships among TCR ligand potency, thresholds for effector function elicitation, and the quality of early signaling events in human T cells.

Determining how receptor ligand quality and quantity together control the biologic responses of T cells is central to understanding normal and pathologic T cell immunity. Here we have carefully examined how variations in antigenic peptide structure and dose affect multiple functional responses of human T cell clones and have correlated these observations with proximal TCR signaling events induc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 161 9  شماره 

صفحات  -

تاریخ انتشار 1998